项目步骤如下:

  • 使用模拟器产生驾驶记录
  • 使用keras建立卷积网络模型预测图像的转向角
  • 训练校验模型
  • 在模拟器中测试模型

1)使用模拟器产生驾驶记录

本试验是Udacity的自动驾驶纳米学位第一学期的P3,使用self-driving-car-sim模拟器产生驾驶记录,产生的记录如下,模拟器的使用教程参考Introduction to Udacity Self-Driving Car Simulator

In [1]:
import csv
with open('/home/zzx/imagedata/driving_log.csv') as csvFile:
        reader = csv.reader(csvFile)
        print(next(reader))
['/home/zzx/imagedata/IMG/center_2017_11_09_14_28_39_576.jpg', '/home/zzx/imagedata/IMG/left_2017_11_09_14_28_39_576.jpg', '/home/zzx/imagedata/IMG/right_2017_11_09_14_28_39_576.jpg', '0', '0', '0', '1.763208E-06']
In [2]:
import matplotlib.pyplot as plt
image=plt.imread('/home/zzx/imagedata/IMG/center_2017_11_09_14_28_39_576.jpg')
plt.imshow(image)
plt.show()

1.1)数据预处理

In [3]:
import cv2
import csv
import numpy as np
import os

#解析模拟驾驶的日志
def getLinesFromDrivingLogs(dataPath, skipHeader=False):
    """
    Returns the lines from a driving log with base directory `dataPath`.
    If the file include headers, pass `skipHeader=True`.
    """
    lines = []
    with open(dataPath + '/driving_log.csv') as csvFile:
        reader = csv.reader(csvFile)
        if skipHeader:
            next(reader, None)
        for line in reader:
            lines.append(line)
    return lines


def findImages(dataPath):
    """
    Finds all the images needed for training on the path `dataPath`.
    Returns `([centerPaths], [leftPath], [rightPath], [measurement])`
    """
    
    #walk(top, topdown=True, onerror=None, followlinks=False)
    #每次遍历的对象都是返回的是一个三元组(root,dirs,files)
    #root 所指的是当前正在遍历的这个文件夹的本身的地址
    #dirs 是一个 list,内容是该文件夹中所有的目录的名字(不包括子目录)
    #files 同样是 list,内容是该文件夹中所有的文件(不包括子目录)
    
    #找到dataPath下的所有目录
    directories = [x[0] for x in os.walk(dataPath)]
    
    #filter()函数是 Python 内置的另一个有用的高阶函数,filter()函数接收一个函数 f 和一个list,这个函数 f 的作用是对每个元素进行判断,
    #返回 True或 False,filter()根据判断结果自动过滤掉不符合条件的元素,返回由符合条件元素组成的新list
    dataDirectories = list(filter(lambda directory: os.path.isfile(directory + '/driving_log.csv'), directories))
    centerTotal = []
    leftTotal = []
    rightTotal = []
    measurementTotal = []
    for directory in dataDirectories:
        lines = getLinesFromDrivingLogs(directory)
        center = []
        left = []
        right = []
        measurements = []
        for line in lines:
            measurements.append(float(line[3]))
            #这里做了修改,驾驶记录文件里面已经包含来绝对路径
            #center.append(directory + '/' + line[0].strip())
            center.append(line[0].strip())
            #left.append(directory + '/' + line[1].strip())
            left.append(line[1].strip())
            #right.append(directory + '/' + line[2].strip())
            right.append(line[2].strip())
        centerTotal.extend(center)
        leftTotal.extend(left)
        rightTotal.extend(right)
        measurementTotal.extend(measurements)

    return (centerTotal, leftTotal, rightTotal, measurementTotal)

def combineImages(center, left, right, measurement, correction):
    """
    Combine the image paths from `center`, `left` and `right` using the correction factor `correction`
    Returns ([imagePaths], [measurements])
    """
    imagePaths = []
    imagePaths.extend(center)
    imagePaths.extend(left)
    imagePaths.extend(right)
    measurements = []
    measurements.extend(measurement)
    measurements.extend([x + correction for x in measurement])
    measurements.extend([x - correction for x in measurement])
    return (imagePaths, measurements)

import sklearn

def generator(samples, batch_size=32):
    """
    Generate the required images and measurments for training/
    `samples` is a list of pairs (`imagePath`, `measurement`).
    """
    num_samples = len(samples)
    while 1: # Loop forever so the generator never terminates
        samples = sklearn.utils.shuffle(samples)
        for offset in range(0, num_samples, batch_size):
            batch_samples = samples[offset:offset+batch_size]

            images = []
            angles = []
            for imagePath, measurement in batch_samples:
                originalImage = cv2.imread(imagePath,cv2.IMREAD_COLOR)
                image = cv2.cvtColor(originalImage, cv2.COLOR_BGR2RGB)
                images.append(image)
                angles.append(measurement)
                # Flipping
                #cv2.flip(img,flipcode)翻转图像
                #flipcode = 0:沿x轴翻转
                #flipcode > 0:沿y轴翻转
                #flipcode < 0:x,y轴同时翻转
                images.append(cv2.flip(image,1))
                angles.append(measurement*-1.0)

            # trim image to only see section with road
            inputs = np.array(images)
            outputs = np.array(angles)
            yield sklearn.utils.shuffle(inputs, outputs)

2)使用keras建立卷积网络模型预测图像的转向角

2.1)LeNet模型,参考LeNet-5

In [4]:
from keras.models import Sequential, Model
from keras.layers import Flatten, Dense, Lambda, Convolution2D, Cropping2D
from keras.layers.pooling import MaxPooling2D
import matplotlib.pyplot as plt

def createPreProcessingLayers():
    """
    Creates a model with the initial pre-processing layers.
    """
    model = Sequential()
    model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=(160,320,3)))
    #keras.layers.convolutional.Cropping2D(cropping=((0, 0), (0, 0)), data_format=None)
    #cropping:长为2的整数tuple,分别为宽和高方向上头部与尾部需要裁剪掉的元素数
    model.add(Cropping2D(cropping=((50,20), (0,0))))
    return model


def leNetModel():
    """
    Creates a LeNet model.
    """
    model = createPreProcessingLayers()
    model.add(Convolution2D(6,5,5,activation='relu'))
    model.add(MaxPooling2D())
    model.add(Convolution2D(6,5,5,activation='relu'))
    model.add(MaxPooling2D())
    model.add(Flatten())
    model.add(Dense(120))
    model.add(Dense(84))
    model.add(Dense(1))
    return model
Using TensorFlow backend.
In [5]:
def nVidiaModel():
    """
    Creates nVidea Autonomous Car Group model
    """
    model = createPreProcessingLayers()
    model.add(Convolution2D(24,5,5, subsample=(2,2), activation='relu'))
    model.add(Convolution2D(36,5,5, subsample=(2,2), activation='relu'))
    model.add(Convolution2D(48,5,5, subsample=(2,2), activation='relu'))
    model.add(Convolution2D(64,3,3, activation='relu'))
    model.add(Convolution2D(64,3,3, activation='relu'))
    model.add(Flatten())
    model.add(Dense(100))
    model.add(Dense(50))
    model.add(Dense(10))
    model.add(Dense(1))
    return model

3)训练模型

3.1)训练LeNet模型

In [8]:
logdata='/home/zzx/imagedata3'
centerPaths, leftPaths, rightPaths, measurements = findImages(logdata)
imagePaths, measurements = combineImages(centerPaths, leftPaths, rightPaths, measurements, 0.5)
print('Total Images: {}'.format( len(imagePaths)))

# Splitting samples and creating generators.
from sklearn.model_selection import train_test_split
samples = list(zip(imagePaths, measurements))
train_samples, validation_samples = train_test_split(samples, test_size=0.2)

print('Train samples: {}'.format(len(train_samples)))
print('Validation samples: {}'.format(len(validation_samples)))

train_generator = generator(train_samples, batch_size=512)
validation_generator = generator(validation_samples, batch_size=512)


model = leNetModel()

# Compiling and training the model
model.compile(loss='mse', optimizer='adam')
history_object = model.fit_generator(train_generator, samples_per_epoch= \
                 len(train_samples), validation_data=validation_generator, \
                 nb_val_samples=len(validation_samples), nb_epoch=20, verbose=1)

model.save('lenet_model.h5')
print(history_object.history.keys())
print('Loss')
print(history_object.history['loss'])
print('Validation Loss')
print(history_object.history['val_loss'])

plt.plot(history_object.history['loss'])
plt.plot(history_object.history['val_loss'])
plt.title('model mean squared error loss')
plt.ylabel('mean squared error loss')
plt.xlabel('epoch')
plt.legend(['training set', 'validation set'], loc='upper right')
plt.show()
Total Images: 108189
Train samples: 86551
Validation samples: 21638
Epoch 1/20
86016/86551 [============================>.] - ETA: 0s - loss: 1.7422   
/home/zzx/anaconda3/envs/rnn/lib/python3.5/site-packages/keras/engine/training.py:1569: UserWarning: Epoch comprised more than `samples_per_epoch` samples, which might affect learning results. Set `samples_per_epoch` correctly to avoid this warning.
  warnings.warn('Epoch comprised more than '
87040/86551 [==============================] - 101s - loss: 1.7254 - val_loss: 0.3302
Epoch 2/20
87086/86551 [==============================] - 96s - loss: 0.3205 - val_loss: 0.3040
Epoch 3/20
87040/86551 [==============================] - 96s - loss: 0.2984 - val_loss: 0.2868
Epoch 4/20
87086/86551 [==============================] - 96s - loss: 0.2736 - val_loss: 0.2656
Epoch 5/20
87040/86551 [==============================] - 95s - loss: 0.2641 - val_loss: 0.2560
Epoch 6/20
87086/86551 [==============================] - 95s - loss: 0.2541 - val_loss: 0.2557
Epoch 7/20
87040/86551 [==============================] - 97s - loss: 0.2509 - val_loss: 0.2494
Epoch 8/20
87086/86551 [==============================] - 94s - loss: 0.2465 - val_loss: 0.2455
Epoch 9/20
87040/86551 [==============================] - 96s - loss: 0.2429 - val_loss: 0.2421
Epoch 10/20
87086/86551 [==============================] - 96s - loss: 0.2366 - val_loss: 0.2374
Epoch 11/20
87040/86551 [==============================] - 99s - loss: 0.2271 - val_loss: 0.2153
Epoch 12/20
87086/86551 [==============================] - 96s - loss: 0.1987 - val_loss: 0.1877
Epoch 13/20
87040/86551 [==============================] - 95s - loss: 0.1781 - val_loss: 0.1792
Epoch 14/20
87086/86551 [==============================] - 94s - loss: 0.1726 - val_loss: 0.1706
Epoch 15/20
87040/86551 [==============================] - 96s - loss: 0.1675 - val_loss: 0.1690
Epoch 16/20
87086/86551 [==============================] - 98s - loss: 0.1624 - val_loss: 0.1674
Epoch 17/20
87040/86551 [==============================] - 95s - loss: 0.1596 - val_loss: 0.1619
Epoch 18/20
87086/86551 [==============================] - 96s - loss: 0.1574 - val_loss: 0.1604
Epoch 19/20
87040/86551 [==============================] - 94s - loss: 0.1545 - val_loss: 0.1584
Epoch 20/20
87086/86551 [==============================] - 96s - loss: 0.1521 - val_loss: 0.1574
dict_keys(['val_loss', 'loss'])
Loss
[1.7253713123938617, 0.32050413287153001, 0.29840479966472178, 0.27362969217378058, 0.26409496542285471, 0.25409943297249743, 0.25093492129269768, 0.24647286138672145, 0.24293076466111577, 0.23659969931947258, 0.22712819821694319, 0.198695976457294, 0.17811034181538751, 0.17263049922049015, 0.16754154510357799, 0.16241944265352459, 0.15961373500964221, 0.15741039341366062, 0.15448304081664366, 0.15211396915380193]
Validation Loss
[0.33023744279688055, 0.30395541990173447, 0.28675334426489746, 0.26556245468237943, 0.25596361268650403, 0.25569411415771681, 0.24944394759156488, 0.24551810366625998, 0.24209381165829572, 0.23743714202190616, 0.21526783162897284, 0.18769369197038524, 0.17919768731702457, 0.17061569379211763, 0.16904072299799497, 0.16743187267671933, 0.16193976370306679, 0.16040386191823267, 0.15838230843822593, 0.15737481957132166]

3.2)训练 Nvidia Autonomous Car Group模型

In [6]:
logdata='/home/zzx/imagedata3'
centerPaths, leftPaths, rightPaths, measurements = findImages(logdata)
imagePaths, measurements = combineImages(centerPaths, leftPaths, rightPaths, measurements, 0.5)
print('Total Images: {}'.format( len(imagePaths)))

# Splitting samples and creating generators.
from sklearn.model_selection import train_test_split
samples = list(zip(imagePaths, measurements))
train_samples, validation_samples = train_test_split(samples, test_size=0.2)

print('Train samples: {}'.format(len(train_samples)))
print('Validation samples: {}'.format(len(validation_samples)))

train_generator = generator(train_samples, batch_size=1028)
validation_generator = generator(validation_samples, batch_size=1028)


model = nVidiaModel()

# Compiling and training the model
model.compile(loss='mse', optimizer='adam')
history_object = model.fit_generator(train_generator, samples_per_epoch= \
                 len(train_samples), validation_data=validation_generator, \
                 nb_val_samples=len(validation_samples), nb_epoch=20, verbose=1)

model.save('nVidia_model.h5')
print(history_object.history.keys())
print('Loss')
print(history_object.history['loss'])
print('Validation Loss')
print(history_object.history['val_loss'])

plt.plot(history_object.history['loss'])
plt.plot(history_object.history['val_loss'])
plt.title('model mean squared error loss')
plt.ylabel('mean squared error loss')
plt.xlabel('epoch')
plt.legend(['training set', 'validation set'], loc='upper right')
plt.show()
Total Images: 108189
Train samples: 86551
Validation samples: 21638
Epoch 1/20
86352/86551 [============================>.] - ETA: 0s - loss: 0.2764  
/home/zzx/anaconda3/envs/rnn/lib/python3.5/site-packages/keras/engine/training.py:1569: UserWarning: Epoch comprised more than `samples_per_epoch` samples, which might affect learning results. Set `samples_per_epoch` correctly to avoid this warning.
  warnings.warn('Epoch comprised more than '
88408/86551 [==============================] - 108s - loss: 0.2751 - val_loss: 0.2487
Epoch 2/20
86750/86551 [==============================] - 100s - loss: 0.2396 - val_loss: 0.2396
Epoch 3/20
88408/86551 [==============================] - 100s - loss: 0.2270 - val_loss: 0.2179
Epoch 4/20
86750/86551 [==============================] - 99s - loss: 0.2137 - val_loss: 0.2184
Epoch 5/20
88408/86551 [==============================] - 100s - loss: 0.2044 - val_loss: 0.2053
Epoch 6/20
86750/86551 [==============================] - 100s - loss: 0.2018 - val_loss: 0.2030
Epoch 7/20
88408/86551 [==============================] - 101s - loss: 0.1944 - val_loss: 0.2002
Epoch 8/20
86750/86551 [==============================] - 99s - loss: 0.1940 - val_loss: 0.1940
Epoch 9/20
88408/86551 [==============================] - 100s - loss: 0.1900 - val_loss: 0.1967
Epoch 10/20
86750/86551 [==============================] - 100s - loss: 0.1835 - val_loss: 0.1916
Epoch 11/20
88408/86551 [==============================] - 100s - loss: 0.1821 - val_loss: 0.1880
Epoch 12/20
86750/86551 [==============================] - 100s - loss: 0.1793 - val_loss: 0.1892
Epoch 13/20
88408/86551 [==============================] - 103s - loss: 0.1739 - val_loss: 0.1917
Epoch 14/20
86750/86551 [==============================] - 98s - loss: 0.1743 - val_loss: 0.1871
Epoch 15/20
88408/86551 [==============================] - 101s - loss: 0.1727 - val_loss: 0.1813
Epoch 16/20
86750/86551 [==============================] - 100s - loss: 0.1693 - val_loss: 0.1842
Epoch 17/20
88408/86551 [==============================] - 101s - loss: 0.1657 - val_loss: 0.1775
Epoch 18/20
86750/86551 [==============================] - 99s - loss: 0.1620 - val_loss: 0.1827
Epoch 19/20
88408/86551 [==============================] - 100s - loss: 0.1598 - val_loss: 0.1754
Epoch 20/20
86750/86551 [==============================] - 101s - loss: 0.1576 - val_loss: 0.1788
dict_keys(['val_loss', 'loss'])
Loss
[0.27507824641327527, 0.23959827091233532, 0.22704957356286604, 0.21372005164863742, 0.20437586099602456, 0.20184139881010357, 0.19444498246492342, 0.19401314745237916, 0.19004770316356837, 0.18354564867789189, 0.18207084162290707, 0.17934345283563269, 0.17390004840008047, 0.17431958817679874, 0.17270864407683528, 0.16928230910136308, 0.16568915684555852, 0.16204179119788947, 0.15977098706156709, 0.15759493639764593]
Validation Loss
[0.24869516085494647, 0.2395772473307054, 0.21789557419039987, 0.21841336016630619, 0.20525040545246817, 0.20300381759624075, 0.20021129738200794, 0.19403617971693679, 0.19669921433008311, 0.19159396670081399, 0.18804170620821378, 0.18922604214061389, 0.19167512162488665, 0.18706148998303848, 0.18133852715605811, 0.1841683238036281, 0.17749950831586664, 0.18274741861355895, 0.17542099410837347, 0.17877145848615969]

4)使用训练的模型驾驶模拟器中的汽车

驾驶程序为drive.py,在终端分别使用下面的命令就可以在模拟器中驾驶车辆

python drive.py nVidia_model.h5

python drive.py lenet_model.h5

5)结论

LeNet的效果不好,大部分的时候都掉进沟里去了,Nvidia Autonomous Car Group模型两个场景都跑的挺好,但是由于第一个场景的数据相对少,所以稍微不稳定。

In [ ]: